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We create a large exciton-polariton condensate and employ a
Michelson interferometer setup to characterize the short- and long-
distance behavior of the first order spatial correlation function.
Our experimental results show distinct features of both the two-
dimensional and nonequilibrium characters of the condensate. We
find that the gaussian short-distance decay is followed by a power-
law decay at longer distances, as expected for a two-dimensional
condensate. The exponent of the power law is measured in the
range 0.9–1.2, larger than is possible in equilibrium. We compare
the experimental results to a theoretical model to understand the
features required to observe a power law and to clarify the influ-
ence of external noise on spatial coherence in nonequilibrium
phase transitions. Our results indicate that Berezinskii–Kosterlitz–
Thouless-like phase order survives in open-dissipative systems.

quantum well excitons ∣ semiconductor microcavities

The spatial correlation function quantifies the coherence prop-
erties of a system (1). In a 3D Bose-condensed gas, long range

order is observed, and the correlation function decays toward
a plateau at large distances (2, 3). In the homogeneous 2D Bose
gas (4), however, no long range order can be established (5).
Instead, Berezinskii–Kosterlitz–Thouless (BKT) theory of the
equilibrium interacting gas predicts a transition to a low-tempera-
ture superfluid phase, which shows a power-law decay of the
correlation function (6, 7). Unfortunately, it is frequently hard
to directly measure this, and only very recently (8) was indication
of the power-law decay of coherence seen in a 2D atomic gas. It
has been theoretically predicted (9, 10) that power-law decay of
coherence survives in the nonequilibrium problem, and it is this
prediction that the current experiment sets out to test.

Exciton polaritons are short-lived quasiparticles formed in a
semiconductor quantum well strongly coupled to a planar micro-
cavity (11). Each one is a superposition of a quantum well exciton
and a microcavity photon, and they behave as 2D bosons below
the Mott density. Above a threshold particle density, condensa-
tion is observed (12). Due to the nonequilibrium nature of polar-
iton condensation, understanding its coherence properties is
quite revealing regarding the different roles of fluctuations in the
equilibrium and nonequilibrium problems.

Previous measurements on polariton condensates have de-
monstrated coherence at large distances but were limited by large
experimental uncertainties (13) or highly disordered samples
(14, 15), and the long-distance behavior could not be fully ex-
tracted. Recently, the correlation function at large distances was
studied in 1D condensates confined in a quantum wire (16) and in
a valley of the disorder potential (17). In ref. 16, the data was
energy-resolved so that excited states were filtered out, while
in ref. 17 a rare area on the sample was chosen in which a single
mode condensate is seen. The purpose of both those experiments
was to investigate how long the coherence length of a spectrally
isolated 1D condensate state can be. We, on the other hand, are

interested in the functional form of the correlation function in a
2D condensate and how the excitations populated by the pump-
ing and decay processes can modify it.

With our setup, we can measure values of gð1ÞðrÞ as low as 0.02,
so we can reliably extract the long-distance behavior. We find
that, although true thermal equilibrium is not established, an
effective thermal de Broglie wavelength can still be defined from
the short-distance gaussian decay of gð1ÞðrÞ. Furthermore, gð1ÞðrÞ
at long distances r decays according to a power law, in analogy to
the equilibrium BKT superfluid phase. The exponent of the
power-law decay is, however, higher than can be possible within
the BKT theory. We apply a nonequilibrium theory (9, 10) to
identify the source of the large exponent. We argue that, although
the spectrum is modified due to dissipation, the exponent would
still have the equilibrium value if the spectrum was thermally
populated. If, on the other hand, a white noise source acts on
the system and induces a flat occupation of the excited states,
the exponent can have a large value, proportional to the noise
strength. We therefore conclude that the pumping and decay pro-
cesses, which introduce a nonthermal occupation of the excited
states, can be responsible for the large value of the exponent.

Results
In our study, we use a weak-disorder GaAs-based sample, the
same one as in our recent experiments (18). The condensate is
generated nonresonantly by the multimode laser, which creates
free electon-hole pairs at an excitation energy approximately
100 meV above the lower polariton (LP) energy. Carriers suffer
multiple scatterings before reaching the LP energy, so coherence
is established spontaneously in the condensate and cannot be
inherited from the laser pump. The laser is continuously on and
replaces LPs that leak out of the microcavity at a ps rate. We are
interested in the limit of the homogeneous 2D polariton gas.
For this purpose, we employ a setup based on a refractive beam
shaper that forms a large laser excitation spot with uniform in-
tensity. There is no confining potential on our sample. Because
of the short lifetime, however, the condensate density follows the
photon density of the excitation spot, so we can create circular
condensates with almost flat density and diameters ranging from
14 μm to 44 μm (see ref. 18 and SI Appendix). LP luminescence in
the steady state is observed through a combination of a long-pass
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and a band-pass interference filter, which reject scattered laser
light without distorting the LP spectrum.

We confirmed that the sample disorder potential is weak in two
ways (see SI Appendix). First, the lineshape of the luminescence
at low excitation power is Lorentzian, which is characteristic of a
homogeneously broadened line. Second, we measured a 2D map
of the disorder potential with resolution approximately 1 μm and
found that its spatial fluctuations are indeed weaker than the
homogeneous broadening and also much weaker than the energy
shift due to polariton–polariton interactions. Therefore, we can
ignore the sample disorder in our experiment. The condensate is
still localized in space, though, following the shape of the laser
excitation spot.

The first order spatial correlation function is defined as

gð1Þðr1; t1; r2; t2Þ ¼
hψ †

1ψ2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ †

1ψ1ihψ †
2ψ2i

q [1]

where ψ †
i and ψ i are the creation and annihilation field operators

at space-time point ðri; tiÞ. To measure this function, we built a
Michelson interferometer setup. A schematic is shown in Fig. 1A.
It includes a mirror in one arm, and a right angle prism in the
other. We overlap the condensate real-space image with its
reflected version, so that fringes similar to that of Fig. 1B are
observed on the camera. By changing the length of one interfe-
rometer arm, as shown in Fig. 1A, the relative phase of the two
beams is shifted. As a result, the intensity measured at one pixel
point shows a sinusoidal modulation (Fig. 1C). From the data of
Fig. 1C, we extract the phase difference of the two images at a

particular pixel point, as well as the fringe visibility. The latter is
proportional to the first order correlation function, which is the
physical quantity we are interested in in this experiment.

The prismM2 in Fig. 1A forms the reflection of the condensate
image along the prism axis. Therefore, point ðx; yÞ overlaps with
either ð−x; yÞ, or ðx; −yÞ on the camera, depending on the orien-
tation of the prism. This allows us to measure

gð1Þðx; −x; τÞ ≡ hgð1Þðx; y; tþ τ;−x; y; tÞit; [2]

or

gð1Þðy; −y; τÞ ≡ hgð1Þðx; y; tþ τ; x; −y; tÞit; [3]

where hit denotes time average. In this experiment, we are mainly
interested in interference at τ ¼ 0, so when the time argument is
not mentioned explicitly, we imply τ ¼ 0.

We repeat the procedure explained in Fig. 1 for every pixel, so
that we measure the phase difference between the two interfering
images in addition to the correlation function across the whole
spot. Representative data are shown in Fig. 2. Recording both
these quantities allows us to identify useful signal from systematic
or random noise. Because the prism displaces the beam that is
incident on it, the images from the mirror and the prism are
focused on the camera from different angles, so the two phase
fronts are tilted with respect to each other. As a consequence, we
expect to measure a constant phase tilt. This is the case in Fig. 2B,
in which the laser power is above threshold and a condensate has
formed. We conclude that our measurement of the correlation
function in Fig. 2D is reliable over this whole area. On the other
hand, at a pump rate below threshold, only short-range correla-
tions exist. Fig. 2A shows that in this case the phase difference is
measured correctly only over a small area around the center,
(jxj ≤ 1 μm). So the measured values of gð1Þðx; −xÞ outside this
area are not reliable and give an estimate of our measurement
uncertainties. As is clear from Fig. 2C, the experimental error
can be suppressed down to 0.01.

Phase maps such as those in Fig. 2 have been used to identify
localized phase defects—namely, quantum vortices (19). The
data of Fig. 2B show that such localized defects are not present
in our sample. At points with large fringe visibility (near
x ¼ 0 μm), fringes are perfectly parallel, whereas defects that ap-
pear for large jxj could be due to a numerical uncertainty in the
measurement of the local phase due to the small fringe visibility.
In any case, localized stationary phase defects cannot influence
gð1ÞðrÞ, because it is their motion that destroys spatial correlations
and not their mere presence. It has been found that vortices
appear in large disorder samples (19), when a direct external
perturbation is introduced (20), before the condensate reaches
its steady state (21), or when the condensate moves against an
obstacle (22, 23). None of these conditions is satisfied in our ex-
periment. On the other hand, we have found that, under the same
conditions as the current experiment, mobile bound vortex pairs
appear spontaneously due to the special form of the pumping
spot and the pumping and decay noise (18). In ref. 18), we found
that a single mobile bound vortex–antivortex pair is visible in a
small condensate. In the current experiment, we probe larger
condensate sizes, so it is likely that several vortex pairs are pre-
sent at the same time. Mobile bound vortex pairs are in general
invisible in time-integrated phase maps, like the one in Fig. 2B,
and they are consistent with a power-law decay of gð1ÞðrÞ.

Fig. 3A shows the short-distance dependence of gð1Þðx; −xÞ for
the same pumping power as in Fig. 2A andC. Every dot in Fig. 3A
corresponds to one pixel on the camera, and the x axis is its
distance from the axis of reflection (slightly tilted with respect to
the columns of the charge-coupled device array). Data at dis-
tances jxj > 1 μm is noise, because the measured phase in this
area is random (Fig. 2A). At shorter distances, we can measure
gð1Þðx; −xÞ reliably, and we find that the correlation function has a
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Fig. 1. Michelson interferometer. (A) Schematic of the setup for measure-
ment of the correlation function. The laser is linearly polarized, and we re-
cord luminescence of the orthogonal linear polarization through a polarizing
beamsplitter (PBS). We then employ a 50-50 nonpolarizing beamsplitter
(NPBS), a mirror (M1) and a right-angle prism (M2). The latter creates the re-
flection of the original image along one axis, depending on the prism orien-
tation. A two-lens microscope setup overlaps the two real space images of
the polariton condensate on the camera. (B) Typical interference pattern ob-
served above the polariton condensation threshold along with a schematic
showing the orientation of the two overlapping images. (C) Blue circles: mea-
sured intensity on one pixel of the camera as a function of the prism (M2)
position in normalized units. Red line: fitting to a sine function.
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gaussian form. This is the same functional dependence as for a
thermalized Bose gas when the temperature is sufficiently high or
the density sufficiently small (2, 4). In that equilibrium case,
the width of the gaussian decay is proportional to the thermal
de Broglie wavelength. Although our nonequilibrium system is
quite different than the thermalized Bose gas, we will use this
analogy to define a thermal de Broglie wavelength and therefore
also a temperature. We note that the temperature measured from
the short-distance behavior of gð1Þðx; −xÞ is a measure of the
occupation of the higher energy part of the spectrum (i.e., the
particle-like part of the spectrum). For an insufficiently therma-
lized system, it is quite possible that excitations in different energy
ranges have different effective temperatures. Therefore, the tem-
perature measured this way will not necessarily agree with other
measures of temperature.

In Fig. 3B we plot the effective wavelength λeff as a function of
pumping power. If σ is the standard deviation of the gaussian fit
for gð1Þðx; −xÞ, λeff ¼ 2

ffiffiffiffiffiffi
2π

p
σ in analogy to the thermal de Broglie

wavelength. λeff shows a smooth increase for increasing pumping

power with no obvious threshold, analogous to the theory of
equilibrium noninteracting 2D Bose gas as the particle density is
increased (4). We performed the same experiment for two ortho-
gonal prism orientations as shown in the legend of Fig. 3B. In
one case we measured gð1Þðx; −xÞ, whereas in the other case we
measured gð1Þðy; −yÞ. We found that λeff is shorter along the y axis
and attribute this difference to a small asymmetry of the laser
pumping spot. The occupation of excited states (which deter-
mines λeff) depends on their spatial overlap with the laser pump-
ing spot, so states of equal energy are not always equally
populated. This asymmetry shows that λeff is not simply related
to the cryostat temperature and depends on the spatial and
energy profiles of the high-energy states involved in producing
this correlation length. We also note that the resolution limit of
our imaging setup is approximately 1 μm, hence the measure-
ment of λeff at small pumping power is resolution-limited.

It is known that an ideal autocorrelation measurement with a
Michelson interferometer provides the same information as an
ideal measurement of the spectrum. In particular, gð1Þðx; −x; tÞ
is the Fourier transform of the power spectrum in momentum
space Sðk; ωÞ (24). However, systematic noise in measurement of
Sðk; ωÞ currently makes the direct measurement of gð1Þðx; −x; tÞ
the only way to reliably extract λeff of Fig. 3B as well as the power-
law decay at long distances to be explained later. The Fourier-
transform relationship between gð1Þðx; −x; tÞ and Sðk; ωÞ is illu-
strated in Fig. 4. The measured gð1Þðx; −x; tÞ at very low pumping
power is shown in Fig. 4A. At time delay t ¼ 0, it has a gaussian
form as a function of x, but for increasing t it broadens and
acquires a multipeak structure. This unusual space-time depen-
dence is reproduced by the numerical Fourier transform (Fig. 4C)
of measured Sðk; ωÞ (Fig. 4B). As explained in SI Appendix,
measurement of the time dependence of gð1Þðx; −x; tÞ is limited by
inhomogeneous broadening due to time-integrated data, so it
cannot provide an estimate of the homogeneous dephasing time.

At long distances, the behavior of the correlation function at
zero time delay t ¼ 0 is no longer gaussian. We found that it is
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Fig. 2. Phase map measured for laser power (A) below and (B) above the threshold power Pth. The prism in the Michelson interferometer is oriented
horizontally. The schematics on the top right of A and B show the orientation of the two interfering images. (C and D) Measured gð1Þðx; −xÞ corresponding
to A and B, respectively, averaged over the y axis inside the excitation spot area of 19-μm radius. Blue circles are experimental data. The continuous red and
dashed yellow fitting lines are explained in Figs. 3 and 6, respectively.
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ferometer (see text). The condensation threshold is at approximately 55 mW.
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influenced by the edge of the condensate. In Fig. 5, we plot the
measured gð1ÞðΔxÞ ¼ gð1Þðj2xjÞ ≡ gð1Þðx; −xÞ at pumping power
P ∼ 3 × Pth for increasing pumping spot radius. The measured
gð1ÞðΔxÞ at long distances decreases as the spot size is increased
and eventually converges to a power-law decay for large con-
densates.

We note that the condensate size is slightly smaller than the
pump laser spot radius (3–4 μm smaller from each side for a large
spot). Because of the repulsive interaction between polaritons,
and between polaritons and reservoir excitons, the large density
of the condensate and reservoir creates an antitrapping potential
that pushes LPs away from the center. This effect is stronger for a
gaussian or a very small pumping spot and in long-lifetime sam-
ples (16, 25), whereas in the present experiment it only influences
LPs that are close to the edge.

In the case of a large condensate, we should recover the limit
of (infinitely large) homogeneous polariton gas. Therefore, we
consider a pumping spot radius R0 ¼ 19 μm. In Fig. 6A, we plot
the correlation function gð1ÞðΔxÞ versus Δx as the pumping power
is increased. Only short-range correlations exist for small pump-

ing power, whereas above the condensation threshold of approxi-
mately 55 mW (4.8 kW∕cm2), substantial phase coherence
appears across the whole spot. The functional form of the long-
distance decay is measured to be a power law over about one
decade, as can be seen in Fig. 6B, in which we plot the data at
one specific laser power. We fit the data to a function gð1ÞðΔxÞ ¼
ðλp∕ΔxÞap and plot the exponent ap as a function of pumping
power in Fig. 6C. It is found to be in the range 0.9–1.2. λp is
a parameter with units of length and is not related to λeff , which
is plotted in Fig. 3B*.

It has been claimed that a criterion for polariton condensation
is the appearance of a second threshold as the pumping power is
increased (26, 27). The state after the first threshold was called a
“polariton BEC,” “polariton laser,” or “polariton condensate,”
whereas the state after the second threshold has not been fully
understood yet. It might be a Bardeen–Cooper–Schrieffer (BCS)
crossover (28, 29), photon BEC (30), or photon laser (26). This
double threshold behavior has been observed in micropillar struc-
tures (26), and using a stress trap (27). In the supplementary
information of ref. 18, we also reported the observation of double
threshold using the same sample and excitation conditions as in
the present experiment. We found that in our sample the window
of intensities between the two thresholds is not very wide, and
can only be witnessed using a flat laser excitation spot. This spot
creates a uniform polariton density over a large area, as opposed
to the more common gaussian spot, where the density changes a
lot across the pumping spot.

Finally, we repeated the same measurement of gð1Þðx; −xÞ
using an identical sample at a temperature of 200 K. Because
of the small binding energy, the GaAs excitonic effect is weak
at this temperature. Also, the lasing energy was well above the
bandgap. Therefore, only standard photon lasing was possible.
In this case, we only found exponential decay of the correlation
function and no power law. The details of this measurement are
reported in SI Appendix. This suggests that the interactions of
the strongly coupled exciton-polaritons are essential in the obser-
vation of the reported phenomena
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Discussion
In ref. 31, it was found that excitation with a low-noise single
mode laser revealed the formation of multimode condensation,
and the different condensate modes could be spectrally sepa-
rated. The authors of ref. 31 argued that, if one wants to measure
the intrinsic linewidth of polariton condensates, single mode laser
excitation and energy-resolved data are required. Indeed, it has
been shown (32) that the temporal coherence properties can be
understood based on the idea that laser intensity noise introduces
population fluctuations, which modulate the interaction energy
accordingly, leading to decoherence. However, it is not clear
how pump and decay noise influences spatial coherence. Under
single mode laser excitations, and when the lowest-energy state
is spectrally isolated, long coherence lengths can be observed
(15–17, 33). In the current experiment, we are interested in
how robust spatial correlations are when excitations are included.
We study the “worst case” scenario of multimode laser excitation,
which gives broader spectra compared to single mode laser. How-
ever, as shown in SI Appendix, single mode laser excitation gives
similar results in energy-integrated data. We note that laser phase
noise cannot be an issue in our experiment, because the laser en-
ergy is approximately 100 meV above the LP energy, so the gen-
erated quasiparticles suffer multiple scatterings before forming
the condensate.

Focusing on the multimode laser excitation case, let us now
explore the interpretation of the power law that we observe
and consider what it means for the properties of the nonequili-
brium polariton condensate. In particular, we discuss under what
conditions a power-law decay should be seen and what may con-
trol the value and pump power dependence of the observed ex-
ponent. As has been discussed previously (9, 10, 34), power-law
decay of spatial correlations are not an artifact of equilibrium
condensates but survive more generally in a nonequilibrium con-
densate. Because the power-law decay at long distances arises
from the long wavelength collective modes, this statement is
not trivial, because dissipation can modify the spectrum at long
wavelengths (9, 10, 34).

Let us first recall the results that would apply if one were to
consider an equilibrium interacting 2D Bose gas. In this case,
the exponent is given by ap ¼ 1∕nsλ2 ≤ 1∕4, where ns is the
superfluid density and λ is the thermal de Broglie wavelength
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2∕mkBT

p
. The restriction ap < 1∕4 occurs because in-

creasing temperature has two effects: It excites long wavelength
phase fluctuations, which are responsible for the power-law de-
cay, and it can also excite vortex pairs. The maximum value of
ap occurs at the transition when vortex–antivortex pairs unbind,
so that vortices would proliferate, and cause the BKT transition to
a phase with short-range correlations. The observation here of a
power law ap > 1∕4 implies that effects beyond thermal equili-
brium are required to explain the data; i.e. there is noise that ex-
cites phase fluctuations without leading to vortex proliferation. In
addition, because the equilibrium exponent ap ∝ 1∕ns, one would
expect the exponent to decrease with pump power, as the conden-
sate density increases; the absence of such a decrease again im-
plies effects beyond thermal equilibrium are relevant and suggests
that pumping noise is indeed affecting the observed exponent.

Whereas the existence of power-law decay in a nonequilibrium
condensate was discussed previously, the value of the exponent
and its pump power dependence were not given in those previous
works. Using the formalism described in refs. 9 and 10, the ex-
ponent can be found by calculating

g1ðΔ ~xÞ ∝ exp
�Z

d2k
ð2πÞ2 ð1 − ei ~k·Δ ~xÞf ðkÞ

�
[4]

where f ðkÞ ¼ ∫ ðdω∕2πÞiðDK
ϕϕ −DR

ϕϕ þDA
ϕϕÞ, and DK;R;A

ϕϕ ðk; ωÞ
are the Keldysh, retarded, and advanced Green’s functions for

phase fluctuations. The advantage of writing the correlation func-
tion in this formal way is that it allows one to disentangle the
effects of changes to the spectrum of long wavelength excitations
from the effects of how this spectrum is populated.

The retarded and advanced Green’s functions are independent
of how the spectrum is occupied, and following quite general ar-
guments (9, 10, 34) we can prove that they have poles describing
the low energy spectrum ωk ≃ −iγ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ 2μÞ − γ2

p
where

ϵk ¼ ℏ2k2∕2m is the long wavelength polariton dispersion, μ
the chemical potential (or blueshift) and γ is the linewidth.† De-
spite the modification of the equilibrium spectrum introduced by
γ, it nevertheless remains the case that if this spectrum is occupied
thermally (i.e., if the Keldysh Green’s function is chosen to obey
the equilibrium fluctuation dissipation theorem), one finds †

f thermalðkÞ ≃
1

ns

Z
dω
2π

4γμkBT
jω2 þ 2iγω − 2μϵkj2

≃
mkBT
nsℏ2k2

; [5]

which is independent of γ and matches the equilibrium form of
f ðkÞ. Thus, despite the modifications to the long wavelength spec-
trum, a sufficiently thermalized polariton condensate has the
equilibrium exponent.

In order to explain the larger exponent observed, and the flat
dependence on pump power, we consider a crude model of a sys-
tem with excess pumping noise as an opposite extreme to the
thermalized case. We thus consider a case where the occupation
of excitations is set by a Markovian noise source of strength ζ.
Namely, we take the inverse Keldysh Green’s function to be en-
ergy independent.† This differs significantly from thermal noise
correlations, which are frequency dependent, and diverge at the
chemical potential. The measured spectra shown in SI Appendix
are broad and their linewidth increases as the pumping power is
increased. This occupation of excited states could be induced by
an energy-independent noise source whose strength increases
with the pumping power. In this case, the function f ðkÞ is given
by

f noiseðkÞ ≃
1

ns

Z
dω
2π

2ζðμ2 þ γ2Þ
jω2 þ 2iγω − 2μϵkj2

[6]

which, despite the changed occupation spectrum, still yields a
power-law decay. The exponent becomes ap ¼ ðmζ∕2πℏ2nsÞ
½ðμ2 þ γ2Þ∕2μγ�. Because this has the form ap ∝ ζ∕ns then if the
noise strength and polariton density both increase with the pump
power, then this would explain the absence of a 1∕ns decrease of
the exponent, as seen on Fig. 6C.

One point not addressed so far regards the process of vortex
proliferation in a noisy nonequilibrium condensate. As pump
noise increases, it is likely eventually to lead to proliferation
of vortices, and a transition to a state with only short-range cor-
relations, just as occurs at high temperatures in equilibrium.

In conclusion, the measured power-law decay of the correla-
tion function suggests that some form of the BKT superfluid
phase survives in nonequilibrium condensates; namely, phase
flucutations are excited but no vortices. The large value of the
exponent implies that, in the current experiment, this ordered
phase is more robust against external noise than would be
expected in equilibrium, in which equipartition holds. We conjec-
ture that the main noise source is pump and decay noise, which
create a nonthermal occupation of excited states, and apply a
nonequilibrium theory to show that a power-law decay with a
large exponent is possible in an open system with excess noise.
One may anticipate that sufficient noise could induce vortex
proliferation and a transition to short-range coherence. This

†See SI Appendix for further details.
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fascinating possibility remains an open question for future
studies.

Materials and Methods
Our GaAs-based sample shows a Rabi splitting of 2ℏΩRabi ¼ 14 meV and LP
lifetime of τLP ∼ 2–4 ps near photon-exciton detuning δ ¼ 0, where the data
presented in this paper is taken. From the curvature of the measured energy
versus momentum dispersion at low pumping power, the LP effective mass
was found to be m� ¼ 9.5 × 10−5me at this detuning, where me is the elec-
tron rest mass. The sample is the same as in our recent experiments (18, 33),
and the experimental setup is very similar to ref. 18. We pump the system
with a multimode Ti-Sapphire laser operated in the continuous wave mode,
combinedwith a chopper that creates 0.5-ms pulses at 100-Hz repetition rate.
All powers quoted in the text and SI Appendix refer to the unchopped laser

beam. We employ a commercial refractive beam shaper to generate a flat-
top pumping profile of varying size. TheMichelson interferometer consists of
a 50-50 nonpolarizing cube beamsplitter, a dielectric mirror in the first arm,
and an uncoated glass right angle prism in the second one. The position of
the prism is controlled by a combination of a translation stage and a piezo-
electric actuator.
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1 Experimental details

PM SMF

Laser
Sample

PBS Beam Shaper

Figure S1: Schematic of the laser pumping setup.

The pumping spot setup is shown in Fig. S1. The laser is first coupled to a polarization-maintaining single model fiber,

and a collimated gaussian beam is created at the other end. The beam is then coupled to a commercial refractive beam shaper,

which transforms a collimated gaussian beam of a particular size to a top-hat profile. The objective lens needs to be focused

with respect to the sample, since we image the system through it. We can use an extra lens just after the beam shaper, in order
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Figure S2: By changing the lens just after the beam shaper in Fig. S1, the pumping spot size can be varied. On the upper row,

we plot the LP luminescence images below threshold for the four different spot sizes used in this experiment. The colorscale

is linear, and the label on top of every figure is the spot radius. On the lower row, we plot the corresponding 1D profiles along

the x- and y-axes. The dashed line is an empirical fit to a Fermi-Dirac function, from which we determine the size of the

pumping spot.

to move the focusing point of the laser beam away from the sample surface, and have a large pumping spot on the sample.

The focal length of this lens determines the size of the pumping spot. In Fig. S2, we plot LP luminescence images for the four

different spot sizes used in this experiment. The pumping power is ∼ 10mW , which is below the threshold power Pth for all

four spots.

In Fig. S3, we plot the real space images of LP luminescence for various laser pumping powers, both below and above

threshold. We use a combination of two interference filters, one longpass at 750nm, and one bandpass at 770± 5nm, which

block the laser wavelength without distorting the LP luminescence spectrum. For very low pumping power, luminescence has

a top-hat shape. Close to the threshold power of 55mW , the relaxation rate increases because of enhanced bosonic scattering

into the final state. Therefore, the diffusion length shortens, and luminescence takes the shape of the laser excitation spot.

Airy-like patterns appear because of diffraction. Above threshold, the condensate progressively takes a doughnut-like shape.

We studied this effect in [1], and concluded that the reservoir has a complementary profile with a density maximum at the

center and that repulsive condensate-reservoir interactions render this distribution stable. Also, the condensate is smaller

than the original spot size because of repulsive LP-LP interactions. In particular, the large condensate density creates an

antitrapping potential that pushes LP’s away from the center. This effect only influences LP’s close to the edge for our top-hat

2



0.2mW

−20 −10 0 10 20

−20

−10

0

10

20

1.2mW

−20 −10 0 10 20

−20

−10

0

10

20

3.3mW

−20 −10 0 10 20

−20

−10

0

10

20

7.0mW

−20 −10 0 10 20

−20

−10

0

10

20

12.9mW

−20 −10 0 10 20

−20

−10

0

10

20

22.5mW

−20 −10 0 10 20

−20

−10

0

10

20

37.3mW

−20 −10 0 10 20

−20

−10

0

10

20

60.0mW

−20 −10 0 10 20

−20

−10

0

10

20

76.0mW

−20 −10 0 10 20

−20

−10

0

10

20

95.0mW

−20 −10 0 10 20

−20

−10

0

10

20

x (µm)

y 
(µ

m
)

118.0mW

−20 −10 0 10 20

−20

−10

0

10

20

149.0mW

−20 −10 0 10 20

−20

−10

0

10

20

190.0mW

−20 −10 0 10 20

−20

−10

0

10

20

237.0mW

−20 −10 0 10 20

−20

−10

0

10

20

343.0mW

 

 

−20 −10 0 10 20

−20

−10

0

10

20

0

0.25

0.5

0.75

1

Figure S3: Real space images of LP luminescence for increasing pumping power. Condensation threshold is at 55mW .

pumping spot.

It is known that the excitation laser spot shape influences the condensation characteristics. In particular, for a small

gaussian excitation spot, the condensate ballistically expands due to repulsive polariton-polariton interactions. In this case,

condensation occurs in a state with non-zero momentum [2, 3, 4]. Our pumping spot was engineered to probe the limit of the

2D homogeneous polariton gas.

In Fig. S4, we plot momentum space (far field) spectra for a large pumping spot size (19µm diameter, same as in Fig.

S3). Just above the threshold pumping power, the condensate is formed near zero momentum, and its spectrum blue shifts and

broadens as the pumping power is increased.

To estimate up to what extent the sample disorder influences our results, we performed two measurements. In Figure S5a,

we show a luminescence spectrum measured at low polariton densities at zero momentum, namely at zero collection angle.

To characterize the lineshape, we fit both a Lorentzian and a Gaussian. The Lorentzian fits the data better, which confirms that

luminescence is homogeneously broadened. In Figure S5b, we show a map of the sample disorder potential with resolution of
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Red continuous line is a fit to a Lorentzian, while green dashed line is a fit to a gaussian. (b) (from [1], Supplementary

Information) Map of the disorder potential with spatial resolution of ∼ 1µm. The sample area pictured here is approximately

where the data in the main text was taken.
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∼ 1µm (see Supplementary Information in [1] for details). The fluctuations of the local disorder potential are smaller than the

homogeneous broadening, and much smaller than the condensate blue shift due to repulsive polariton-polariton interactions

of ∼ 1meV . Therefore, for our experiment, we can consider our sample as disorder-free.

The Michelson interferometer setup is described in the main text. Here, we note that the resolution limit of the imaging

optics is ∼ 1µm, which influences the measurement of λeff at small pumping power (see Fig. 2(b) of the main text). If the

transfer function of our imaging system is gaussian (namely, if a delta function is imaged to a gaussian) with width λres, then

the measured width of the gaussian decay is λmeas =
√
λ2res + λ2eff , where λeff is the real effective thermal wavelength,

and λmeas is the measured value. Therefore, if the real λeff is similar to λres, then the measured λmeas should be close

to λres. The height of the gaussian (unity for a perfect optical system) should also drop to a lower value, so that the total

surface does not change. From the measured height of the gaussian fits, namely g(1)(0, 0) ∼ 0.7 − 0.8, and the measured

λmeas ∼ 1.6− 1.7µm, we estimate a lower bound for the real λeff ≥ 1.3µm at small pumping power.

We can also vary the path length difference between the two arms of the Michelson interferometer. This way, we can mea-

sure g(1)(x,−x; t) for various time delays t and probe the temporal coherence of the system. Due to time-integrated detection,

the measured coherence time in our experimental setup is mainly influenced by inhomogeneous broadening. Namely, the con-

densate energy randomly fluctuates in time, and limits the measured fringe visibility. Below the condensation threshold, we

observe the interference pattern shown in Fig. 4a of the main text, where the measured visibility g(1)(x,−x; t) is plotted as

a function of the time delay t and the distance x from the symmetry axis. At t = 0, g(1)(x,−x; t) as a function of x has a

gaussian form, as explained in the main text. However, for increasing time delay t, it broadens and acquires an unusual peak

structure with multiple maxima and minima.

This can be explained by the fact that the first-order correlation function of a uniform, statistically stationary electromag-

netic field is given by the Fourier transform of its power spectrum in momentum space S(k, ω) [5]. Below threshold, the

observed spectrum can be approximated by

S(k, ω) = n(~ω)
γ/π(

~ω − ~ω0 − ~2|k|2
2m∗

)2
+ γ2

, (1)

where ~ω0 is the LP resonance at k = 0, m∗ is the effective mass, γ is the half width at half maximum and n(~ω) is the

particle energy distribution. It is clear that S(k, ω) cannot be written in separable form f(k)g(ω), so the temporal and spatial

correlations of g(1)(x,−x; t) are not independent of each other. Therefore the significant occupation of excited states with

finite momenta causes a broadening of g(1)(∆x) with increasing time delay due to the interference from multiple states with

different energies. The internal structure of this broadened peak with multiple local minima and maxima results from the sharp

cutoff in the far-field spectrum. The sharp cutoff is due to the fact that the polariton distribution is non-thermal because of the

short lifetime and because the polariton lifetime changes as LP’s become more and more exciton-like at larger wavevectors.

This effect is similar to the diffraction pattern of light created by sharp-edged objects like a slit.

To demonstrate this, we measured the far-field spectrum well below threshold (Fig 4(b) of the main text) and calculated its

Fourier transform (Fig 4(c) of the main text) which shows a behavior very similar to the one observed for the experimentally

measured correlation function. Although this effect makes the exact determination of the dephasing time and even its definition
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Figure S6: (a) Measured g(1)(x,−x; t) above threshold.

(b) g(1)(0, 0; t) for different pumping powers above thresh-

old. Dashed lines are fits using equation (2)

Table 1: Parameters of the fitting lines in Fig. S6(b) based on equation (2).

P/Pthr τr (ps) τc (ps)

1.4 0.3 1.0

2.9 1.2 1.0

4.3 2.0 1.1

impossible, one can still conclude that the correlations decay on a very fast timescale, smaller than or similar to the polariton

lifetime of 2-4ps

Above threshold, the shape of g(1)(x,−x; t) changes significantly (Fig. S6(a)). The broadening is very weak and the

internal structure disappears completely because almost all polaritons are now in or close to the ground state in terms of energy

and momentum. This allows us to reliably obtain information about the temporal coherence properties of the condensate by

determining the first-order temporal correlation function g(1)(t) ≡ g(1)(0, 0; t) which is plotted for different pumping powers

in Fig. S6(b). The measured dephasing time is on the order of 1-2 ps, shorter than the polariton lifetime, and it seems to

become slightly shorter for higher pumping powers.

The dephasing time of the condensate in our system is most likely limited by intensity fluctuations of the pumping laser

since much longer dephasing times have been observed with the same sample [6] and in other experiments [7] when using

single-mode lasers. Fluctuations in the particle number lead to changes of the ground state energy because of repulsive

polariton-polariton interactions and therefore destroy phase coherence [8]. Assuming a Gaussian distribution of the energy

fluctuations g(1)(t) can be calculated using the Kubo stochastic line-shape theory:

g(1)(t) = exp

(
−2τ2r
τ2c

(
e−t/τr +

t

τr
− 1

))
(2)

where τr describes the time scale of the fluctuations and τc the width of the energy fluctuations. The above equation can also

be derived using a quantum model of the polariton condensate [8]. The predicted form of g(1)(t) is Gaussian for t ≪ τr and

exponential for t ≫ τr. Fits of equation (2) to our experimental data (see Fig. S6(b) and Table 1) give τr ∼ 0.3 − 2.0ps and

τc ∼ 1ps. τc seems to be approximately constant, whereas τr increases with increasing pumping power.

In Fig. 4(c) of the main text, we plot the exponent ap of the power law fit (λp/∆x)
ap of the correlation function g(1)(∆x).
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Figure S8: (a) Effective thermal de Broglie wavelength λeff as a function of laser pumping power for several photon-exciton

detunings δ. The prism is in the horizontal orientation. (b) Exponent ap of the power law decay as a function of laser pumping

power. In both figures, data for δ = −0.2meV are reproduced from the main text.

In Fig. S7, we plot the parameter λp of the same fit. Although λp has units of length, it is not a characteristic length of the

system. In equilibrium BKT theory, the long-distance decay of g(1)(∆x) is of the form [9]

g(1)(∆x) =
ns
n

(
ξ

∆x

)1/(nsλ
2)

, (3)

where ns is the superfluid density, n is the total density, ξ is the healing length and λ is the thermal de Broglie wavelength.

In this notation, λp =
(
ns

n

)nsλ
2

ξ. Thus, as the density is increased above the critical density, the superfluid fraction ns/n

increases, and λp increases accordingly. This behavior is qualitatively reproduced by our experimental results in Fig. S7.

Thanks to the wedged sample shape, moving to a different position on the same sample shifts the cavity resonance.

This way, we can control the energy difference (detuning) between the cavity and exciton resonances. We have repeated

the measurements reported in the main text at several photon-exciton detunings δ in the range −3.7meV ≤ δ ≤ 2.6meV

(corresponding to effective mass 7.8× 10−5 ≤ m∗

me
≤ 11.5× 10−5). The results are summarized in Fig. S8. In Fig. S8(a), we

plot the experimental results for the effective thermal de Broglie wavelength λeff as a function of pumping power, the same

quantity that is plotted in Fig. 2(b) of the main text. The behavior is similar for all detunings, and the qualitative explanation
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Figure S9: Same as Fig. 4 of the main text, but now the

prism of the Michelson interferometer is in the vertical ori-

entation. (a) g(1)(∆y) = g(1) (|2y|) ≡ g(1)(y,−y) vs ∆y

for increasing laser power. The laser pumping spot radius

is R0 = 19µm and the threshold power Pth = 55mW .

(b) g(1)(∆y) vs ∆y for one particular laser power and for

y both positive (blue circles) and negative (red squares).

Dashed line is a power law fit. (c) Exponent ap of the

power law decay as a function of laser power.

is given in the main text. The measured λeff takes about the same values for all detunings at very low pumping power, as the

measurement is resolution-limited in this region. In Fig. S8(b), we plot the fitting results for the exponent ap of the power

law decay of g(1)(∆x) at long distances. The same quantity is plotted in Fig. 4(c) of the main text for δ = −0.2meV . The

long-distance decay was indeed found to be a power law, with an exponent in the range 0.9 − 1.3 when including different

detunings.

In [1], it was shown that vortex-antivortex pairs are produced at the center of our condensate, and move inside it before re-

combining. Because of a small asymmetry of the pumping spot, they always sit along the horizontal axis. For an appropriately

small condensate, there is on the average only one vortex pair inside the condensate at any time, and it can be observed with

a Michelson interferometer measurement using the vertical prism orientation, for which points (x, y) interfere with (x,−y).
Although the pair is mobile, so that the vortex and antivortex follow a correlated motion, a characteristic phase pattern is

present in the interferogram. In the horizontal prism orientation, points (x, y) interfere with (−x, y), so the vortex in (x, y)

overlaps with the antivortex in (−x, y) and no phase defects appear on the interferogram. The single pair is observed for

pumping spot radius of 12µm. For the 22µm spot radius that we currently use, we expect several pairs to be present, so that

no clear signature of them can be witnessed in the interferograms. Because of the vortex pair motion inside the condensate,

though, g(1)(y,−y) takes smaller values than g(1)(x,−x).
In Fig. 2(b) of the main text we showed that in the vertical prism orientation the effective de Broglie wavelength is

shorter than in the horizontal prism orientation. We now compare the long-distance behavior of g(1)(r) between the two

cases. In Fig. S9, we plot the same quantities as Fig. 4 of the main text, but now the prism orientation is vertical, so we

interfere points (x, y) with (x,−y), instead of (x, y) with (−x, y). In Fig. S9(a), we plot the measured correlation function
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g(1) (∆y) = g(1) (2 |y|) ≡ g(1)(y,−y) versus ∆y for several pumping powers. As in Fig. 4(a) of the main text, phase

coherence is extended above the condensation threshold. In Fig. S9(b), we plot g(1) (∆y) as a function of ∆y for one

particular pumping power above threshold. The decay at short distances is more abrupt than in Fig. 4(a), and there is a local

minimum at ∆y ∼ 3µm. But the long-disance decay is again a power law, and the exponent ap, as shown in Fig. S9(c), is

around 1.

To investigate the effect of laser noise, we measured g(1)(∆x) under singlemode laser excitation and energy-integrated

detection. We again found a power law dependence at large distances, as shown in Fig. S10. This suggests that the power

law behavior is not influenced much by the laser intensity noise, but is rather inherent to the pump and decay processes in

the microcavity. Due to the limited power of our singlemode laser, we could not study larger condensates, but the power law

dependence is already clear at this condensate size.

Finally, we studied an identical sample at a temperature of 200K, and an area where the cavity resonance is above the

bandgap. At this temperature, excitons are dissociated, and only standard lasing is possible. We use ps pulsed excitation at a

large angle and a wavelength λ = 746.1nm. The pumping spot was gaussian with diameter ∼ 25µm. In Fig. S11, we show

the measured spectrum and total luminescence intensity as a function of pumping power. A lasing transition is observed above

70mW . We measured g(1)(x,−x) above threshold (Fig. S12), and found that it decays exponentially above threshold. This

data suggests that the interactions of the strongly coupled exciton-polaritons are essential in the observation of the reported

phenomena.

2 Theoretical model of power law decay

This section expands the discussion of correlations for a non-equilibrium polariton condensate, making use of the formalism

presented in [10, 11]. We discuss in more detail the two cases presented in the article, that of a thermalised system, where the

equilibrium exponent is recovered, and that of a noisy system, where a different exponent is recovered.

For a two-dimensional Bose gas, where long distance coherence is dominated by phase fluctuations, the asymptotic form
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Figure S11: High-temperature data (200K). The mea-
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tom) as a function of pumping power. The lasing fre-
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of the correlation function can be written as:

g1(∆x) = nQC exp

{
−
∫
kdk

2π
[1− J0(k∆x)] f(k)

}
(4)

where nQC is the quasi-condensate density, J0(k∆x) is a Bessel function, resulting from angular integration, and f(k) =∫
(dω/2π)iD<

ϕϕ(k, ω), whereD<
ϕϕ = DK

ϕϕ−DR
ϕϕ+D

A
ϕϕ is the phase-phase component of the Green’s function corresponding

to emission.

The Green’s functions DK,R,A are the Keldysh, retarded, and advanced Green’s functions, which together define the

density of states for fluctuations, and the occupation of those states in the non-equilibrium system. In order to calculate f(k),

it is necessary to know the full form of the Green’s function, and not just the excitation spectrum. This is because it is necessary

to distinguish those excitations that correspond to phase fluctuations from those that correspond to density fluctuations.

The Keldysh Green’s function can be found by combining the retarded and advanced Green’s functions with the inverse

Keldysh Green’s function [D−1]K . The inverse Keldysh Green’s function describes the noise, due either to thermal excitations

or pumping noise, which leads to the occupation of the phase modes. The Keldysh Green’s function then has the form

DK = −DR[D−1]KDA. This can be thought of as a generalisation of the fluctuation-dissipation theorem, as the retarded

and advanced Green’s functions encode dissipation, the Keldysh Green’s function DK describes the fluctuations, and so

[D−1]K encodes the relation between these.

In the following, we first summarise previous results for the retarded and advanced Green’s functions, and then discuss the

two cases presented in the article for the Keldysh Green’s function.

2.1 Retarded and Advanced Green’s functions: Density of states

Since the long wavelength form of the Green’s function is independent of details of specific models, the retarded Green’s

function can be derived in many ways. One intuitive approach is to consider the linear response of order parameter equation

of a non-equilibrium condensate, the complex Gross-Pitaevskii Equation,

i∂tψ =

[
−~2∇2

2m
+ U |ψ|2 + i

(
γ − Γ|ψ|2

)]
ψ. (5)

Following standard methods [12], this gives a Green’s function which may be written in the ψ,ψ† basis as:

DR =
1

ω2 + 2iγω − ϵk(ϵk + 2µ)

(
µ+ ϵk + ω + iγ −µ+ iγ

−µ− iγ µ+ ϵk − ω − iγ

)
, (6)

in which ϵk = ~2k2/2m is polariton dispersion at long wavelengths. The phase-phase component can be found by changing

to the density-phase basis [11]. In terms of the ψ,ψ† basis matrix structure, the phase-phase component is thus:

iDϕϕ =
i

8nS
(1 − 1)D

(
1

−1

)
. (7)
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2.2 Thermalised case

As discussed above, for the thermalised case, the form of the inverse Keldysh Green’s is fixed by the fluctuation dissipation

relation. In the ψ,ψ† basis, the matrix structure (see [11]) requiresDψψ†(ω) = −D∗
ψ†ψ(−ω) so the distribution can be written

[D−1]K = 2iγ coth

(
ω

2kBT

)(
1 0

0 −1

)
. (8)

We will focus only those terms which lead to the power law decay, and ignoring those that only affect short range correla-

tions 1. Expanding the Green’s function for low frequencies and long wavelengths (i.e. considering the terms that control the

asymptotic behaviour at large distances), one then finds:

iD<
ϕϕ ≃ 4γµkBT

nS |ω2 + 2iγω − ϵk(ϵk + 2µ)|2
. (9)

After integrating Eq. (9) over ω, the final expression does not depend on γ, and so the modified spectrum has no effect on the

exponent when the system is thermalised. Thus, one has:∫
dω

2π
iD<

ϕϕ ≃ µkBT

nSϵk(ϵk + 2µ)
≃ mkBT

ns~2k2
. (10)

Then, performing the integral over k in Eq. (4), there is a logarithmic divergence
∫
kdk/k2, which is cut off for k < 1/∆x by

the numerator 1 − J0(k∆x) → 0. Thus, one recovers the standard form g1(∆x) ∝ exp(−ap ln(∆x)) with the equilibrium

result ap = mkBT/2πns~2.

2.3 Noisy case

To model a non-thermalised system with excess noise, one may note that the inverse Keldysh Green’s function can also be

interpreted as the spectrum of noise the system experiences, arising due to pumping and decay (see e.g. [13]). Thus, taking a

flat (i.e. Markovian) noise correlation function, with strength ζ, one has:

[D−1]K = 2iζ

(
1 0

0 1

)
. (11)

Because this corresponds to a frequency independent noise strength ζ, the matrix structure is different from Eq. (8). In the

same way as above, we may calculate the part of D<
ϕϕ which dominates at long distances, which leads to the expression:

iD<
ϕϕ ≃ 2ζ(µ2 + γ2)

nS |ω2 + 2iγω − ϵk(ϵk + 2µ)|2
. (12)

This expression clearly has identical ω and k dependence to Eq. (9), thus the integration follows in exactly the same way.

The difference between the two expressions corresponds purely to replacing kBT → ζ µ
2+γ2

2µγ , hence the modified exponent,

ap = µ2+γ2

2µγ mζ/2πns~2. Considering the model nonlinear pumping written in Eq. (5), the density, and hence blueshift, are

set by the net pumping strength µ = γU/Γ, thus the only pump power dependence of the exponent ap comes from ap ∝ ζ/ns.
1In fact, it is only the contribution from DK which is responsible for the power law decay at long distances; the contribution from DR −DA is finite at

long distances, and so just provides a constant prefactor for the correlation function.
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